Answer all the questions. Each question is worth 10 points. All topological spaces (X, \mathcal{T}) are assumed to be Hausdorff.

- 1) Give an example of a separable topological space that is not second countable.
- 2) Let (X,d) be a metric space. Let $f:X\to R$ be a function. Show that the ϵ - δ definition of continuity is equivalent to for any open set $U\subset R$, $f^{-1}(U)$ is an open set.
 - 3) State and prove the Baire category theorem for complete metric spaces.
- 4) Let (X,d) be a metric space. Show that for any closed set $C \subset X$, there is a continuous function $f: X \to R$ such that $C = f^{-1}(0)$.
- 5) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{{\alpha} \in \Delta}$ be a family of topological spaces such that the product space $X = \prod X_{\alpha}$ is connected. Show that each X_{α} is a connected space.
- 6) Let X be a compact space and Y a Hausdorff space. Suppose $f: X \to Y$ is a continuous bijection. Show that f^{-1} is also continuous.
- 7) Give an example with full details of a locally compact metric space that is not compact.
- 8) Let $A \subset X$ be a dense set. Suppose $f, g: X \to X$ be two continuous functions such that f(x) = g(x) for all $x \in A$. Show that f = g.
 - 9) Prove that the fundamental group of $\mathbb{R}P^2$ is $\mathbb{Z}/2\mathbb{Z}$.
 - 10) If f is a homeomorphism between (X, x) and (Y, y), then show that

$$\pi_1(X,x) \simeq \pi_1(Y,y)$$

Is the converse true - if two spaces have isomorphic fundamental groups then are they homeomorphic ?